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Infectious diseases have posed severe threats to public health across the world. Effective prevention

and control of infectious diseases in the long term requires adapting interventions based on

epidemiological evidence. The sequential multiple assignment randomized trial (SMART) is a multistage

randomized trial that can provide valid evidence of when and how to adapt interventions for controlling

infectious diseases based on evolving epidemiological evidence.

We review recent developments in SMARTs to bring wider attention to the potential benefits of

employing SMARTs in constructing effective adaptive interventions for controlling infectious diseases

and other threats to public health. We discuss 2 example SMARTs for infectious diseases and

summarize recent developments in SMARTs from the varied aspects of design, analysis, cost, and ethics.

Public health investigators are encouraged to familiarize themselves with the related materials we

discuss and collaborate with experts in SMARTs to translate the methodological developments into

preeminent public health research. (Am J Public Health. 2023;113(1):49–59. https://doi.org/10.2105/

AJPH.2022.307135)

Infectious diseases have posed se-

vere threats to public health

throughout human history. In recent

years, the COVID-19 pandemic has

inflicted enormous human suffering

and in tandem has attracted consider-

able research attention. To slow the

spread of COVID-19 and to reduce the

morbidity and mortality rates, numer-

ous interventions have been imposed

to control the spread of the disease

(e.g., limiting group size of social gather-

ings, promoting vaccine uptake, and is-

suing stay-at-home orders).1 However,

to minimize the negative impact on

people’s livelihood while also effectively

controlling the diseases, decision-

makers are required to find the precise

ways to adapt health promotion and

disease prevention programs based on

evolving epidemiological evidence, in-

stead of sticking to “one-size-fits-all”

interventions.

Such sequences of decision-making

about when and how to adapt interven-

tions based on evolving epidemiological

evidence have been widely applied to

the prevention of infectious diseases

and can be referred to as “adaptive

interventions,” also known as “dynamic

treatment regimens” or “adaptive

treatment strategies” in the field of

biostatistics.2 The main components of

an adaptive intervention are (1) inter-

vention options, such as different types

of interventions, delivery approaches,

and dosage levels; (2) decision points,

that is, the prespecified time points to

recommend interventions based on

baseline characteristics or intermediate

tailoring variables; (3) tailoring variables,

that is, variables that can be used to

identify which intervention should be

recommended and for whom (e.g.,

mediators, moderators, or early surro-

gates for longer-term outcomes of in-

terest); and (4) decision rules, that is,

prespecified rules that can recommend

Analytic Essay Peer Reviewed Wang and Chakraborty 49

RESEARCH & ANALYSIS
A
JP
H

Jan
u
ary

2023,Vo
l113,N

o
.1

https://doi.org/10.2105/AJPH.2022.307150
https://doi.org/10.2105/AJPH.2022.307150
https://doi.org/10.2105/AJPH.2022.307150
https://doi.org/10.2105/AJPH.2022.307150
https://doi.org/10.2105/AJPH.2022.307135
https://doi.org/10.2105/AJPH.2022.307135


interventions based on previous histor-

ical data.

One example of an adaptive interven-

tion for treating COVID-19–positive

patients with mild symptoms is the

following: First, treat the patients at

community care facilities with general

medical care. Then, assign patients who

respond adequately, according to pre-

specified criteria, to the community re-

covery facilities before discharging

them, and hospitalize nonresponders

and provide intensified medical care.3

With the increasing popularity of

adaptive interventions, there appears to

be a wave of interest in developing a

promising evidence-based adaptive in-

tervention to maximize patient gains.4

When faced with life-threatening infec-

tious diseases, researchers rely primari-

ly on historical experiences and obser-

vational data to inform decision-making

procedures, given that explanatory ran-

domized controlled trials (RCTs) are

time consuming and may fail to gener-

ate up-to-date conclusions to guide the

implementation of public health inter-

ventions. However, the validity of such

an analysis based on observational data

depends on the untestable ignorable in-

tervention assignment assumption, that

is, the assumption that receiving the in-

tervention or not is independent of the

potential outcomes.5

At the outset of the COVID-19 pan-

demic, observational studies were es-

sential to provide evidence for prompt

public policies. However, as the increas-

ing level of COVID-19 vaccine coverage

has significantly decreased the morbidi-

ty and mortality rates, proactive re-

search (e.g., pragmatic study designs) is

needed to move to the next-generation

epidemiological prevention measures

and further identify evidence-based

interventions for future public health

practice for infectious diseases.

The sequential multiple assignment

randomized trial (SMART) is an experi-

mental design consisting of multiple

randomization stages.2 This type of

design serves as a promising tool to

address scientific questions about con-

structing effective adaptive interven-

tions for controlling infectious diseases.

SMARTs have been implemented in var-

ious health domains, including diet and

weight control,6 HIV infection,7 mental

health,8 and behavioral sciences.9 This

recent surge in the prevalence of

SMARTs can be attributed to the in-

creasingly ripened methodology in the

design and analysis aspects and the

availability of some good tutorial arti-

cles providing blow-by-blow guidance

to help practitioners gain a better un-

derstanding of SMARTs.10–16 However,

to the best of our knowledge, except

for the setting of HIV infection, there

are far fewer SMARTs in the field of in-

fectious diseases, likely on the grounds

that contagious diseases require a rap-

id real-time response at the early stage

of the outbreak. Furthermore, SMARTs

may be relatively uncommon to many

public health researchers; thus,

researchers may hesitate to choose a

SMART design when constructing

evidence-based adaptive interventions

for controlling infectious diseases.

We aim to facilitate the implementa-

tion of SMARTs for infectious diseases

by summarizing the recent develop-

ments in SMARTs with a special focus

on infectious diseases. We first review

2 SMARTs for infectious diseases to

help readers gain a better grasp of

employing SMARTs to improve public

health. We then provide details about

associated data analysis and cost and

ethical considerations in SMARTs. We

also summarize the existing software

for designing and analyzing SMARTs to

build a bridge between methodological

developments and practical implemen-

tation. Although we focus on infectious

diseases, our discussion is sufficiently

general to apply SMARTs to a wide

range of other fields.

EXAMPLE SMARTS FOR
INFECTIOUS DISEASES

In this section, we provide 2 example

SMARTs for controlling infectious

diseases.

Example 1

Despite the high global capacity to

produce COVID-19 vaccines and the in-

creasing clinical trial data demonstrat-

ing their effectiveness, some people still

hesitate to get vaccinated because they

fear potentially severe side effects or

simply lack the conviction that the vac-

cines are useful. Governments have

taken public measures (e.g., mounting

public media programs) to dispel the

rumors about COVID-19 vaccines. How-

ever, such measures can reach only

a limited audience. More efforts are

needed to further promote vaccine up-

take and speed up the process of herd

immunity.

There is a large-scale SMART, each

stage of which was planned as a sepa-

rate RCT for investigating the effect of

digital interventions on the uptake of

COVID-19 vaccines.17 The investigators

in this SMART considered several first-

line interventions to motivate people to

get vaccinated and second-line inter-

ventions to further remind those who

have not received the first vaccine dose

in a prespecified period because of

having received the first-line interven-

tion. A simplified version of the design

is presented in Figure 1. Participants

who had not already taken the first

dose at the starting point of the trial
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were equally randomized to either the

message group or the message plus

video group. After 8 days, those who

still had not received the first dose

were randomized to either the no fur-

ther message group or the reminder

group, with a reminder message that

could help clear potential barriers to

vaccination, such as forgetfulness, has-

sle, costs, and procrastination. The pri-

mary outcome of interest was whether

a participant has made the appoint-

ment for the first vaccine dose. There

were 4 adaptive interventions embed-

ded in this SMART: (1) first send a moti-

vating message, then send a basic

reminder message if not vaccinated;

(2) send a motivating message only at

the starting point; (3) first send a

motivating message plus explanatory

video, then send a reminder message if

not vaccinated; and (4) send a motivat-

ing message plus explanatory video

only at the starting point.

Example 2

Malaria, a potentially serious infectious

disease transmitted by a specific type

of mosquito, can be effectively con-

trolled by the use of long-lasting insecti-

cide-treated nets (LLIN), indoor residual

spraying (IRS), and larval source man-

agement (LSM).18 The high cost of

implementing IRS and LSM is a major

concern that needs to be considered

when constructing an effective adaptive

intervention for malaria control, and

more scientific evidence is required to

guide the prevention interventions,

such as when and how to employ IRS

and LSM while ensuring efficient har-

nessing of the resources for malaria

control.

An ongoing cluster-randomized

SMART (Figure 2) was designed to col-

lect evidence for constructing an effec-

tive adaptive intervention for malaria

control in western Kenya.18 By “cluster

randomized,” we mean that the inter-

ventions are randomly administered at

the cluster level (e.g., a village or several

neighboring villages), whereas the out-

comes are collected at the individual

level (i.e., residents in the randomly

selected households). The enrolled

clusters are randomized to receive

LLIN, piperonyl butoxide (PBO) LLIN

(the next-generation LLIN combining

the synergist piperonyl butoxide with

pyrethroids), or the combination of

LLIN and IRS. After 15 months, clusters

will be evaluated for the response sta-

tus based on the change in clinical ma-

laria incidence when using PBO LLIN or

LLIN1 IRS compared with LLIN alone.

Responders will continue with their ini-

tial intervention, whereas nonrespon-

ders to PBO LLIN are randomized to

the combination of PBO LLIN1 LSM or

the intervention determined by a rein-

forcement learning algorithm devel-

oped to generate unbalanced randomi-

zation probabilities in favor of the

estimated superior intervention for

each cluster, and nonresponders to

LLIN1 IRS are randomized to LLIN1

IRS1 LSM or PBO LLIN1 IRS. The pri-

mary outcome of interest is the clinical

malaria incidence. The primary aim of

this trial is to compare first-line inter-

ventions PBO LLIN and LLIN1 IRS in

terms of the effectiveness of reducing

malaria incidence after 36 months, and

the secondary aim is to identify the

R

Message

Message+Video

Vaccinated

Vaccinated

No further message

R

No further message

R

No further message

Reminder

No further message

Reminder

yes

no

yes

no

Starting
point Stage-1

Intermediate
response Stage-2

FIGURE 1— A SMART for Developing Digital Adaptive Interventions to
Facilitate the Uptake of COVID-19 Vaccines

Note. R5 randomization.
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most effective intervention to reduce

malaria incidence.

In addition to these 2 examples, there

is another ongoing SMART for developing

an optimal adaptive intervention to facili-

tate COVID-19 testing and adherence to

the Centers for Disease Control and Pre-

vention recommendations among high-

risk people in an urban community.19 We

have not presented details here because

of space limitations.

WHEN TO USE SMARTS

There have been tremendous improve-

ments in the experimental designs for

constructing interventions with multiple

components, such as factorial

designs,20 SMARTs, and microrando-

mized trials.21 Given that the concepts

of these designs are somewhat

entangled, researchers may be con-

fused about when to use SMARTs at

the beginning of the design stage,

which limits the broader use of

SMARTs. With this backdrop, Nahum-

Shani et al.22 proposed a practical

framework to provide valuable insights

into choosing the most appropriate de-

sign among all these candidate designs.

To briefly summarize, a SMART design

is a proper choice when (1) the inter-

ventions of interest are multicompo-

nent interventions, (2) the researchers

aim to select multiple effective compo-

nents out of all candidates to be

included in the final intervention,

(3) there are research interests in the

timing of intervention components, and

(4) the conditions are changing slowly.

It is important to note that, in cases in

which all 4 conditions for choosing

SMARTs are met, multiple single-stage

RCTs may serve as an alternative way to

examine the effect of the initial and sub-

sequent interventions.23 Single-stage

RCTs, however, have some inevitable dis-

advantages compared with SMARTs.11

First, single-stage RCTs do not allow

researchers to investigate either the syn-

ergetic effect between the initial and

subsequent interventions in the long

term or the potential tailoring variables

for more tailored adaptive interventions.

In addition, it can be argued that parti-

cipants in SMARTs may be less likely to

drop out because alternative interven-

tions are provided in cases of insuffi-

cient early response. In other words,

SMARTs provide participants with a

“safety net” (i.e., a second chance to get

a different, potentially beneficial inter-

vention when the current intervention is

not working). By contrast, with single-

stage RCTs, participants with apparently

ineffective interventions have no choice

but to discontinue the intervention or

drop out. SMARTs can also be replaced

by an up-front randomized trial,24 which

randomizes patients to candidate adap-

tive interventions at the beginning of the

study. Compared with SMARTs, the ra-

tionale and statistical methods in up-

front randomized trials are easier to

understand. However, several studies

have demonstrated that the estimators

from SMARTs are more efficient (with

smaller variance) than are those from up-

front randomized trials.24,25 Moreover,

rerandomizations in SMARTs allow

restratification, which may be useful in

achieving balanced distributions of

R

PBO LLIN

LLIN + IRS

LLIN LLIN

Response

Response

PBO LLIN

R

LLIN + IRS

R

PBO LLIN + LSM

Reinforcement learning

LLIN + IRS + LSM

PBO LLIN + IRS

yes

no

yes

no

Starting
point Stage-1

Intermediate
response Stage-2

FIGURE 2— A SMART for Developing Optimal Adaptive Interventions for
Malaria Control

Note. IRS5 indoor residual spraying; LLIN5 long-lasting insecticide-treated nets; LSM5 larval source
management; PBO5piperonyl butoxide; R5 randomization.
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covariates in rerandomizations, whereas

up-front randomized trials do not allow

this.

SAMPLE SIZE
CALCULATIONS IN SMARTS

The required sample size in a SMART

is dictated by its primary research

questions.

Table 1 summarizes the most com-

mon primary goals of SMARTs, and

some illustrative applications and soft-

ware are provided for each case when

applicable. Briefly, there are mainly 4

primary research goals in SMARTs:

(1) performing the pilot evaluation,

(2) estimating the main effects of first-

line and second-line interventions,

(3) comparing embedded adaptive

interventions, and (4) developing the

optimization goal (i.e., more deeply tai-

lored adaptive interventions).

The evaluation of feasibility is often

the intended goal in a pilot SMART, in

which researchers assess the accept-

ability and the rationale of the embed-

ded adaptive interventions as well

as the fidelity of the study staff to im-

plement the specified adaptive

interventions in preparation for a fu-

ture full-scale SMART. Almirall et al.12

described in detail how to design a pilot

SMART and proposed a feasibility-based

method to determine the required sam-

ple size that ensures sufficient partici-

pants in each intervention sequence,

allowing researchers to gather compre-

hensive information about the feasibility

of a planned SMART. Building on this,

Yan et al.26 presented a precision-based

method to size a pilot SMART with vari-

ous types of outcomes, by which the SEs

of estimates of interest are confined in a

prespecified range.

TABLE 1— Sample Size Calculations for Different Primary Research Questions in SMARTs

Primary Goal Method Cluster/Individual Primary Outcome Example Trials Software

Pilot evaluation Precision based Individual Continuous/binary/
count26

Yan et al.27 https://bit.ly/3zyktU7

Feasibility based Both All12 Lambert et al.28 https://bit.ly/3Nqq3gY

Main effect Effect of first-line
treatments

Similar to RCTs Similar to RCTs29 Zhou et al.18 https://bit.ly/3SUgcRG

Effect of second-line
treatments

Similar to RCTs Similar to RCTs29 Sherwood et al.6 https://bit.ly/3SUgcRG

Compare adaptive
interventions

Select optimal
adaptive
interventions

Individual Continuous29

Pairwise superiority
testing

Individual Continuous29–31 https://bit.ly/3SUgcRG
https://bit.ly/3Fx1blQ32

Continuous/binary33

Binary34 https://bit.ly/3SUgcRG

Survival35

Continuous
longitudinal36

Ordinal37 https://bit.ly/3NmHeQA

Cluster Continuous/binary33 Quanbeck et al.38

Continuous39

Continuous (skew-t,
MNAR)40

https://bit.ly/3zwLTtA41

Pairwise
noninferiority
testing

Individual Continuous42 https://bit.ly/3Wnd7gf

MCB testing Individual Continuous43 https://bit.ly/3DK1EyT44

Binary45 https://bit.ly/3Nluw4R,
https://bit.ly/3NvA1Os46

Optimization Normality based or
projection based

Individual Continuous47

Note. MCB5multiple comparisons with the best; MNAR5missing not at random; RCT5 randomized controlled trial; SMART5 sequential multiple
assignment randomized trial.
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For a full-fledged SMART, one of the

most common primary research goals

that drive sample size calculation is

to investigate the effect of individual

components. Oetting et al.29 gave a

detailed illustration of deriving the re-

quired sample size for comparing

stage-specific intervention effects with

continuous primary outcomes. Briefly,

the calculation procedure is similar

to that used in RCTs, except that the

response rate of initial interventions

should be incorporated when investi-

gating the intervention effect of subse-

quent interventions for responders and

nonresponders. Practitioners can fol-

low the same principles for other types

of primary outcomes.

A sizable literature focuses on compar-

ing embedded adaptive interventions as

a whole, comparing 2 or more embed-

ded adaptive interventions,29–31 or

screening out the inferior set of adaptive

interventions.43 Ghosh et al.42 further ex-

tended the framework by emphasizing

the importance of noninferiority testing

between 2 embedded adaptive interven-

tions to construct an almost equally ef-

fective adaptive intervention with lower

cost, less burden, or fewer side effects

and developed the analysis and sample

size calculation formulas for the nonin-

feriority testing. All the aforementioned

sample size calculation methods are suit-

able for individual-level SMARTs with

continuous primary outcomes. Recently

there has been tremendous progress in

deriving the sample size calculation for-

mulas for comparing embedded adap-

tive interventions in individual-level

SMARTs with binary,34 survival,35,48–50

ordinal,37 and continuous longitudinal36

outcomes; for cluster-level SMARTs with

binary and continuous outcomes33,39;

and for cluster-level SMARTs with various

features of outcomes, including spatial

clustering, non-Gaussianity, and missing

not at random.40

Investigators may also be interested

in constructing more tailored adaptive

interventions (i.e., sequences of deci-

sion rules that recommend interven-

tion options based on additional ob-

served information; e.g., baseline

characteristics or intermediate poten-

tial tailoring variables). The research

question is thus to explore an optimal

tailored adaptive intervention that is

expected to maximize the overall effec-

tiveness of interventions if applied to

the entire study population. Although

optimization is a possible primary goal,

it often serves as a bonus on top of in-

vestigating main effects and comparing

embedded adaptive interventions

when conducting a SMART.

When a SMART is designed with the

optimization objective, the sample size

calculation involves technical issues

posed by estimating and evaluating an

optimal adaptive intervention using the

same data. Rose et al.47 proposed

normality-based and projection-based

sample size calculation methods to en-

sure enough power for comparing the

estimated optimal deeply tailored

adaptive intervention with the fixed

standard intervention. Note that the

required sample size for comparing

embedded adaptive interventions or

optimization is often higher than that

for comparing stage-specific interven-

tions. Researchers are advised to de-

fine the primary goals of SMARTs based

on the research budget for recruiting

participants and the major research

questions of interest.

Although significant strides have

been made in statistical methodology,

to the best of our knowledge, these

sample size calculation methods for

comparing adaptive interventions or

optimizations are scarcely used in real

practice. The reason for this may be

that both the scientific investigators

and the statisticians are more familiar

with the statistical methods in standard

trials, so they are inclined to sizing

SMARTs based on the main effect,

with the additional goal of comparing

embedded adaptive interventions or

optimization to provide complementary

information for future confirmatory

trials. More efforts are needed to trans-

late the developed methodologies to

real clinical and public health practice

by lucidly explaining the concepts of

SMARTs and the statistical tools to a

broader audience.

DATA ANALYSIS IN
SMARTS

When the research question concerns

examining the main effects in a SMART,

standard statistical methods in RCTs

can be used to analyze the SMART

data. However, when the goal is to

discern the effectiveness of 2 or more

embedded adaptive interventions,

adjustments to the standard methods

are required to account for the sequen-

tial randomizations in SMARTs. The

weighted and replicated regression51

can provide valid inferences of the

mean outcomes of all the embedded

adaptive interventions simultaneously,

by weighting and replicating observa-

tions to account for the underrepre-

sentation of certain subgroups because

of the design of the trial. Nahum-Shani

et al.52 presented a thorough guideline

on how to use this method to analyze

data from SMARTs with end-of-study

continuous outcomes. This method

holds the promise of being straightfor-

ward and accessible to practitioners as

it is akin to standard regression
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methods and can be executed using

standard software. The method has

been extended to analyze data from

SMARTs with continuous longitudinal

outcomes,53 binary outcomes,34 and

continuous outcomes in cluster-level

SMARTs,39 and it has been employed in

real practice for primary, secondary,

and exploratory analyses.6,54,55

Q-learning, a stage-by-stage regression-

type procedure,56 can be used to identify

an optimal deeply tailored adaptive inter-

vention (as opposed to the embedded

adaptive interventions) based on SMART

data. The letter Q stands for the quality

of an intervention (e.g., a desired clinical

outcome), conditional on the observed in-

formation and subsequent interventions.

Intuitively, Q-learning begins by estimating

the optimal decision rule at the last stage

andmoves backward successively to con-

struct an optimal decision rule at each

stage, assuming the use of optimal deci-

sion rules at the subsequent stages.

Nahum-Shani et al.56 provide a detailed il-

lustration of implementing Q-learning to

construct more tailored adaptive inter-

ventions in SMARTs. Other notable

statistical learning–based and tree-based

methods57–59 can also be applied to de-

velop optimal adaptive interventions. Ta-

ble 2 lists several user-friendly R packages

to compare embedded adaptive interven-

tions or develop more tailored adaptive

interventions.

Missing data problems pose a signifi-

cant challenge to data analysis in

SMARTs. Standard imputation methods

cannot be directly applied to deal with

missing data in SMARTs because of the

nonstandard multistage randomization

procedure. However, researchers can

alleviate the impact of missing data on

the validity of analysis from both design

and analysis perspectives. First, as stat-

ed by Almirall et al.,12 pilot SMARTs can

provide valuable insights for future full-

scale SMARTs in terms of strategies to

reduce the dropout rate and to treat

early dropout patients. Liu et al.64 pre-

sented a SMART with enrichment to

improve design efficiency when the

dropout rate is high by augmenting the

trial sample with new patients who

have received previous stages’ inter-

ventions. In terms of analysis,

Shortreed et al.65 proposed a multiple

imputation strategy to tackle the

unique missing data problems arising

in SMARTs. Researchers are encour-

aged to employ these tactics to achieve

more reliable inferences from SMARTs

and perform sensitivity analysis to

check the validity of the missing at ran-

dom assumption.

COST-EFFECTIVE ADAPTIVE
INTERVENTIONS

Effective control of infectious diseases

requires the involvement of a variety of

communities and stakeholders. Efficient

use of scarce medical and financial

resources is one of the major challenges

when implementing large-scale preven-

tion and intervention programs.66 When

intervention resources are limited for

conducting a SMART, the optimal alloca-

tion of interventions with a fixed budget

constraint is desired. Morciano and

Moerbeek67 proposed an optimal

allocation strategy for simultaneously

comparing embedded adaptive inter-

ventions in SMARTs with a fixed sample

TABLE 2— R Packages for Data Analysis in SMART

Package Name Objective Outcome Method Software

SMARTAR32 Comparisons between
embedded adaptive
interventions

Continuous, binary Global/pairwise testing https://bit.ly/3Fx1blQ

DTR60 Comparisons between
embedded adaptive
interventions

Survival Weighted logrank tests https://bit.ly/3NvMyBl

DTRlearn261 Optimization Continuous, binary Q-learning, other outcome-
weighted learning
methods

https://bit.ly/3zxCwK5

DTRreg62 Optimization Continuous, binary, survival Q-learning, G-estimation,
dynamic weighted
ordinary least squares
(dWOLS)

https://bit.ly/3zypg83

DynTxRegime63 Optimization Continuous, binary Q-learning, interactive
Q-learning, weighted
learning, value-search
methods

https://bit.ly/3WlZGx2

Note. SMART5 sequential multiple assignment randomized trial.
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size or a fixed budget and provided an

easy to use Web app to facilitate the use

of this optimal allocation strategy.

Although the efficacy of improving

outcomes is often the main focus when

developing optimal adaptive interven-

tions, the cost of an intervention is an-

other important factor to consider in

health economics. When an interven-

tion is more effective and less costly

than another, it is deemed to be the

strictly superior intervention. However,

if the more effective intervention costs

more, to select the adaptive interven-

tions that can be both effective and

sustainable in practice, policymakers

are expected to weigh their options

between health efficacy and the addi-

tional cost per unit outcome improve-

ment. Xu et al.68 proposed a decision

tree–based algorithm to develop a cost-

effective adaptive intervention with the

net monetary benefit as the primary

outcome. This cost-effectiveness analy-

sis method is recognized as a promising

way to analyze SMART data and develop

more tailored cost-effective adaptive

interventions. As it has been widely ac-

knowledged that cost effectiveness is a

major concern during clinical practice,

researchers are encouraged to collect

cost-related data for a future cost-

effectiveness analysis.

ETHICAL CONSIDERATIONS
IN SMARTS

Even though SMARTs can potentially

unpack the black box of sequenced

multicomponent interventions, they

may require more time to implement

than do standard RCTs. For infectious

diseases, however, the earlier the inter-

vention is delivered, the more benefits

it will provide for public health. With the

aim of reducing the time for conducting

SMARTs, Wu et al.69 proposed a SMART

with interim monitoring, in which the

global hypothesis testing of all embed-

ded adaptive interventions is con-

ducted at each interim monitoring

time, and early stopping of the trial is

permitted if the evidence of efficacy is

sufficient.

When faced with emerging infectious

diseases that threaten millions of human

lives, it is imperative to conduct trials to

select effective interventions for future

patients while minimizing the infection

and mortality rate of enrolled partici-

pants. Several extensions of SMARTs can

be potentially applied to increase the

number of participants receiving the op-

timal intervention in SMARTs for control-

ling infectious diseases. Cheung et al.70

provided a SMART with adaptive ran-

domization based on Q-learning. Rough-

ly speaking, it estimates the parameters

of the stage-specific conditional mean

outcomes based on the data from

previous patients and updates the as-

signment probabilities in favor of the

interventions with higher values of the

predicted stage-specific conditional

mean outcomes. Wang et al.71 pre-

sented a response-adaptive SMART to

incorporate the short-term intervention

efficacy shown from previous patients

when randomizing the stage 2 interven-

tions. So far, very few adaptive SMARTs

have been implemented in practice; for

example, Ruppert et al.72 presented a

trial protocol for a SMART with an inter-

im analysis targeting older patients with

chronic lymphocytic leukemia, in which

rerandomization will be discontinued

if the adaptive intervention to be ran-

domized has proven to be inferior to the

others.

At the early stage of an infectious dis-

ease outbreak, the information regard-

ing potentially effective interventions

accumulates continuously, and as a

result, a more flexible trial design that

allows adding new interventions and

removing inferior interventions may be

a better choice to save on costs and

time. One of the most notable exam-

ples is the RECOVERY (Randomized

Evaluation of COVid-19 ThERapY) trial,73

a platform trial to discover effective

interventions to reduce the mortality

rate in hospitalized COVID-19 patients.

Future work could extend SMARTs to

have such flexibility and compare its

statistical properties with other types of

SMARTs, which may be useful in plan-

ning for future pandemic control.

CONCLUSIONS

We sought to facilitate the application

of SMARTs in the area of infectious dis-

eases by familiarizing interested investi-

gators with the general framework of

SMARTs and the recent developments

in SMARTs in terms of methodology

and practical guidelines. Despite our

best efforts to find related literature for

a thorough review, there may be some

publications that we have missed.

Although we do not provide an exhaus-

tive list of related articles, we cover the

most important aspects of conducting

a SMART, from identifying scenarios in

which SMARTs are applicable and sum-

marizing design and analysis methods

for SMARTs to addressing the costs

and ethical issues in such trials. Note

that we did not intend to provide step-

by-step guidance on implementing a

SMART; instead, we attempted to pro-

vide comprehensive resources for

potential designers of SMARTs for in-

fectious diseases, including example

SMART designs for controlling infec-

tious diseases and easy to use software

for sample size calculation and data

analysis in SMARTs.

Although SMARTs may seem concep-

tually complex to some readers, they
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can shift the fixed interventions to the

more realistic interventions in which

modifying interventions is allowed

according to the early response status,

which mimics what public health practi-

tioners do in practice. We hope that

investigators will draw inspiration from

this review and translate it into practice

to improve public health in the face of

life-threatening infectious diseases as

well as other potential health-related

challenges.
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