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Preface

Treatment of a chronic disease or disorder almost always involves a se-
ries of decisions. For example, treatment of cancer involves a succession
of decisions at key milestones in the disease progression; for example,
selection of a first-line chemotherapy at the time of diagnosis, of a main-
tenance regimen for a patient who responds to first-line therapy or of a
second-line/salvage chemotherapy for a patient who does not, and of ad-
ditional intervention in the event of recurrence. Similarly, management
of a behavioral or mental health disorder such as substance abuse or
depression requires a series of decisions in which the clinician may start,
stop, maintain, modify, or adjust interventions on the basis of a patient’s
response and other characteristics.

A dynamic treatment regime is a set of sequential decision rules, each
corresponding to a key decision point in the disease or disorder process.
Each rule maps information on a patient accrued to that point to a set
of feasible treatment options, so basing selection of treatment at each
decision point on a patient’s baseline and evolving characteristics. Thus,
a dynamic treatment regime formalizes the process by which a clinician
synthesizes patient information to select treatment options in practice.

The emphasis on precision medicine, which involves tailoring treat-
ment to a patient’s characteristics in an evidence-based manner, has led
to an increasing focus on statistical methodology for the discovery of
dynamic treatment regimes from data. In particular, there is consider-
able interest in estimation, from suitable data, of an optimal dynamic
treatment regime, one that, if used to select treatment for the patient
population, would lead to the most beneficial outcome on average. The
foundations of statistical methodology for this enterprise were pioneered
by James Robins through several seminal publications starting in the
mid-1980s, and fundamental advances on characterization and estima-
tion of an optimal treatment regime by Susan Murphy and Robins in
the mid-2000s formed the basis for a growing subsequent body of work
by these researchers and others in the late 2000s and early 2010s.

Since that time, the literature on statistical methodology for dynamic
treatment regimes has experienced a veritable explosion as the goal of
precision medicine has become a central pillar of health sciences research.
In addition, there are parallel developments on methodology for sequen-

xiii



xiv PREFACE

tial decision making in different contexts in computer science and other
disciplines. As a consequence, there is a vast and expanding literature
relevant to discovery of dynamic treatment regimes from data, in which
different terminology, notation, and perspectives abound, making this
topic difficult to approach for the first time.

Our goal in writing this monograph is to address this challenge by
presenting a unified and systematic introduction to methodology for
dynamic treatment regimes. We do not intend for the book to be an ex-
haustive account of methodology in this area, however. Rather, we hope
that the book will provide readers with foundational knowledge and a
strong basis for studying the broader literature, including advances that
post-date the book’s publication. Accordingly, we present fundamental
statistical frameworks along with selected methods that lay the ground-
work for further study of this topic. Our ultimate objective is to enhance
awareness of and appreciation for this body of work and its critical im-
portance in the treatment of chronic diseases and disorders.

Our target audience is researchers and graduate students in statis-
tics and related quantitative disciplines who are familiar with probability
and statistical inference and popular statistical modeling approaches but
have no prior exposure to dynamic treatment regimes or other relevant
topics, such as causal inference. As discussed in the outline given in Sec-
tion 1.5, the book includes both foundational and more advanced mate-
rial. Thus, a reader can study selected portions of the book or the book
in its entirety depending on his or her goals and background. Reading
plans suited to those who seek a broad introduction to the foundations
and key methods in this area and to those who desire in addition a
deep, comprehensive understanding of the theoretical underpinnings are
presented in Section 1.5.

As the focus of this book is on statistical methodology and its theo-
retical foundations for this audience, the book is likely not suitable for
domain science investigators and other practitioners whose primary goal
is to understand the methods at an applied level with an eye toward im-
plementation in practice. We refer such readers to articles specifically
designed for this purpose, such as Collins et al. (2004), Murphy et al.
(2007a), Murphy et al. (2007b), Lei et al. (2011), Nahum-Shani et al.
(2012b), Almirall et al. (2012a), Nahum-Shani et al. (2012a), Almirall
et al. (2014), Kidwell (2014), and Kelleher et al. (2017).

The book is an outgrowth of notes developed by one of us (Tsiatis)
for a PhD-level special topics course taught in the North Carolina State
University (NC State) Department of Statistics over the past decade. We
started with these notes as a foundation and have refined, expanded, and
added to them to develop the book in its current form. As reviewed in
Section 1.5, a subset of the material in the book is suitable as the basis
for an introductory PhD-level course on this topic. We are indebted to
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the Statistical and Applied Mathematical Sciences Institute (SAMSI) in
Research Triangle Park, North Carolina, for hosting a PhD course taught
by three of us (Davidian, Holloway, Laber) in spring 2019 as part of its
Program on Statistical, Mathematical, and Computational Methods for
Precision Medicine, which provided us with invaluable feedback from
students at NC State, Duke University, and the University of North
Carolina at Chapel Hill (UNC-CH).

One of us (Holloway) is the developer of a comprehensive R package,
DynTxRegime, that implements a number of the methods for estima-
tion of optimal dynamic treatment regimes from data reviewed in this
book. The package is meant to be a “one-stop-shop” for methodology for
dynamic treatment regimes and is available from the Comprehensive R
Archive Network (CRAN). We gratefully acknowledge National Cancer
Institute program project grant P01 CA142538, awarded to a consor-
tium of NC State, Duke University, and UNC-CH, which has supported
not only the development of this package but the efforts of the authors
to conceive and complete this monograph.

We deliberately do not include in the book static accounts of appli-
cation of methods covered in each chapter. Instead, detailed demonstra-
tions of application of selected methods are presented on a dedicated,
publicly accessible website, http://dtr-book.com. Most of these appli-
cations make use of the DynTxRegime package and are meant to assist a
reader who has studied the methods in detail with their implementation
and with gaining proficiency with the package. We intend for the website
to be “dynamic,” with periodic updates and modifications as the pack-
age and methods evolve. We also hope to post supplemental materials
and other resources and encourage readers to check the website often.

We offer our profound thanks to John Kimmel, Executive Editor,
Statistics, at Chapman & Hall/CRC Press of Taylor & Francis for en-
couraging us to take on this project and for his infinite patience with
our frequent failure to meet our own self-imposed deadlines. Two of us
(Tsiatis and Davidian) have had the privilege of working with John on
previous books and are delighted to have had the opportunity to benefit
from his extensive experience and guidance again. We also thank the
several reviewers of the book-in-progress for their suggestions and feed-
back. We are grateful to Lisa Wong for creating the cover art. Finally,
we thank our families, friends, and colleagues for their support.

Anastasios A. (Butch) Tsiatis, Marie Davidian,
Shannon T. Holloway, Eric B. Laber

Raleigh, North Carolina
September 2019

http://dtr-book.com
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Chapter 1

Introduction

1.1 What Is a Dynamic Treatment Regime?

In the context of treatment of a chronic disease or disorder, a dynamic
treatment regime is a set of sequential decision rules, each corresponding
to a key point in the disease or disorder progression at which a decision
on the next treatment action for a patient must be made. Each rule
takes as input information on the patient to that point and returns
the treatment he/she should receive from among the available, feasible
options. A dynamic treatment regime thus formalizes the process by
which a clinician treating a patient synthesizes information and selects
treatments in practice. Dynamic treatment regimes are also referred to
as adaptive treatment strategies or adaptive interventions, notably in the
literature on treatment of mental health and behavioral disorders.

Precision medicine focuses on tailoring treatment decisions to a pa-
tient’s characteristics and the incorporation of evidence in guiding these
decisions. Dynamic treatment regimes thus provide a formal, principled
framework for this enterprise. An optimal dynamic treatment regime can
be defined as one that, if used to select treatment actions for the patient
population, would lead to the most favorable outcome on average. Ac-
cordingly, formulation of dynamic treatment regimes and methodology
for their development and evaluation based on data are of considerable
interest to a growing community of clinical and intervention scientists
wishing to develop optimal regimes for precision medicine and quantita-
tive researchers seeking tools to support them in these efforts.

Accounts of methodological developments for dynamic treatment
regimes are scattered across a vast literature in statistics, computer sci-
ence, and medical decision making. The resulting differences in notation
and terminology and the complex concepts involved can make this im-
portant topic difficult to approach. The purpose of this monograph is to
provide a unified, systematic introduction to statistical methods for dy-
namic treatment regimes. Our focus is on their use in the health sciences;
namely, for guiding treatment, prevention, and diagnosis of a disease or
disorder. However, the ideas and concepts are relevant in other settings
in which sequential decisions on interventions or policies must be made,

1
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C
No Response

Response M

S

Figure 1.1 Schematic depiction of two key decision points in treatment of a
acute leukemia. At Decision 1, an induction chemotherapy C is selected. At
Decision 2, for a patient for whom a response is induced, a maintenance ther-
apy M is selected; for a patient for whom no response is induced, a salvage
therapy S is selected.

as in education, engineering systems, economics and finance, marketing,
and resource management.

1.2 Motivating Examples

We begin by considering three applications that illustrate and motivate
subsequent developments and to which we refer in later chapters.

1.2.1 Treatment of Acute Leukemias

Figure 1.1 presents schematically two key decision points in the treat-
ment of acute leukemias, a setting to which we refer in subsequent chap-
ters as a running example. When a patient diagnosed with a particular
type and stage of the disease presents, the first decision a clinician faces
is to select a chemotherapeutic regimen meant to induce a positive re-
sponse, such a partial or complete remission. Assume that at Decision 1
there are two available induction therapy options, denoted as C1 and C2.
Typically, following a cycle of induction therapy, a bone marrow biopsy
is performed to assess whether or not the patient has achieved the de-
sired response. If so, the patient is deemed a responder at that point; if
not, the patient receives a second cycle of induction therapy, after which
response status is again assessed. Thus, the desired response might be
achieved sooner for some patients than others or not at all. The second
key decision confronting the clinician is to determine the next step of
treatment, which is dictated by the patient’s response status. If the pa-
tient has achieved a satisfactory response, Decision 2 involves selecting
a maintenance treatment, the goal of which is to sustain the response.
If not, at Decision 2, a second line or salvage therapy must be chosen.
Suppose there are two maintenance options, M1 and M2, and two salvage
options, S1 and S2.
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The goal of the clinician is thus to select an induction therapy from
the set of available treatment options {C1,C2} at Decision 1 and then
a maintenance or salvage option from the set of all available treatment
options {M1,M2,S1,S2} at Decision 2, where, clearly, only maintenance
options are feasible for patients who respond and only salvage options are
feasible for those who do not. The clinician seeks to make these decisions
so as to maximize the expected benefit to the patient with respect to a
health outcome such as disease-free or overall survival time. In making
these decisions in practice, the clinician uses his or her expert judgment
to take account of accrued information on the patient available at each
decision point, where this information may include demographics, prior
medical history, genetic and genomic characteristics, initial and evolv-
ing physiologic and clinical variables, occurrence and timing of adverse
reactions to induction therapy, and so on.

If attention is restricted to these two decision points, then a corre-
sponding dynamic treatment regime comprises two decision rules. The
first rule, associated with Decision 1, takes as input all information avail-
able on the patient at the time he or she presents (baseline) and returns
an induction option selected from {C1,C2}. The second rule, correspond-
ing to Decision 2, takes as input all of the information available at
Decision 1 plus additional information evolving in the intervening pe-
riod between Decisions 1 and 2, including response status, and returns
a maintenance or salvage option as appropriate from {M1,M2,S1,S2}.
Shortly, we introduce a mathematical representation of such rules and
regimes and in subsequent chapters use it to characterize formally the
clinician’s goal of maximizing expected benefit to the patient as the
problem of seeking an optimal set of such rules; that is, an optimal dy-
namic treatment regime.

Single and Multiple Decision Regimes

This situation exemplifies what is referred to as a multiple decision or
multistage problem, where several, in this case two, sequential decision
points can be identified; and selection of treatment over the entire se-
quence is of interest. In a multiple decision problem, dynamic treatment
regimes thus comprise multiple decision rules, and the focus is on an out-
come, in this case, survival time, that may be ascertained subsequent to
the final decision.

In a single decision or single stage problem, a single decision point
is identified. In this example, if the focus is on the role of induction
chemotherapy in inducing remission (the desired response), then it is
natural to restrict attention to Decision 1, where response is now the
outcome of interest. Here, a dynamic treatment regime consists of a
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Initial Intervention

No Response

Response Continue Initial 
Intervention

Modify Initial 
Intervention

Figure 1.2 Schematic depiction of two key decision points in treatment of at-
tention deficit hyperactivity disorder. At Decision 1, an initial intervention is
selected. At Decision 2, for a child who responds to his initial intervention,
there is a single option, to continue the initial intervention. For a child who
does not respond, the initial intervention either can be augmented by adding
the other intervention or intensified by increasing the dose.

single rule taking all information available at the time a patient presents
as input and returning an option in {C1,C2}.

It is conventional in much of clinical chronic disease research, and
from a regulatory perspective, to focus on a single decision point in iso-
lation, even if it is recognized that subsequent decisions are required in
the intervening period between that decision point and ascertainment
of the outcome. For example, interest may be in the choice of induction
therapy at Decision 1 as it relates to survival outcome. It is of course
possible to conceive of single decision dynamic treatment regimes in this
situation, as above. The outcome that results from treatment selection
according to the single, Decision 1 rule will also be affected by the in-
evitable subsequent decisions that will be made (without reference to
further, formal decision rules). We defer discussion of this point to later
chapters; for now, we emphasize only that, depending on the setting, sin-
gle or multiple decision dynamic treatment regimes may be of interest.

1.2.2 Interventions for Children with ADHD

Figure 1.2 depicts two decision points in the treatment of children with
attention deficit hyperactivity disorder (ADHD). For a child diagnosed
with ADHD, Decision 1 involves selection of an initial intervention,
where here we consider two options, low dose medication M or low in-
tensity behavioral modification therapy B, which will be administered
ideally for twelve weeks. During the next twelve weeks, the child is evalu-
ated periodically for response status, which is based on a clinical assess-
ment of ADHD severity. A child who shows satisfactory response over
the entire period can be considered a responder to the initial treatment,
and there is no reason to alter that treatment at the end of the twelve
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weeks. Thus, the second decision for the clinician, at twelve weeks, in-
volves choosing the single option C, continue the child on the initial
intervention. Alternatively, if at any assessment during the twelve weeks
the child does not or ceases to show a response, it is not beneficial to
continue the initial treatment, so a second decision must be made by the
clinician at that point, which involves two options. If the child is on med-
ication, the clinician can choose to increase the dose, thereby intensifying
the treatment; or she can maintain the dose but also place the child in
behavior modification therapy, so augmenting the initial intervention.
Likewise, for a child initially receiving behavioral therapy, the clinician
can increase the intensity of the behavioral therapy or continue the low
intensity therapy but augment it by prescribing medication. Thus, for a
child with negative response status, the two options at Decision 2 are to
intensify, I, or augment, A, the initial intervention. As in the leukemia
example, the timing of Decision 2 can be different for different children,
with all children reaching Decision 2 by twelve weeks.

Here, then, the clinician’s objective is to select an initial intervention
from the set of available options {M, B} at Decision 1 and, following
ascertainment of response status, to select at Decision 2 an option from
{C, I, A}, where C is feasible only for children who are responding to
their current interventions and {I, A} are appropriate for children who
are not. As in the acute leukemia setting, the clinician would like to
make these decisions to maximize the expected benefit to the child,
where benefit is reflected in a longer-term outcome such as a parent or
teacher reported assessment or an academic achievement measure. With
attention restricted to these two decision points, a dynamic treatment
regime involves a decision rule at Decision 1 (baseline) that takes as in-
put all information on the child, including demographic, socioeconomic,
achievement, and clinical assessment variables, and outputs an initial
intervention selected from {M, B}. The Decision 2 rule takes this infor-
mation plus additional, intervening information ascertained up until the
time of the decision, including response status, and returns an option
from {C, I, A}. As in the acute leukemia setting, of obvious interest is
development of an optimal regime.

One can envision extension of this scenario to additional decision
points, where, following Decision 1, at each subsequent decision point
children who continue to respond to the initial intervention receive C,
and the clinician can choose I or A for those who cease to respond to the
initial intervention. For children who fail to respond to both their initial
and either augmented or intensified subsequent interventions, further
options could be established and corresponding rules devised.

This exemplifies a common situation, particularly in behavioral and
mental health contexts, where, for individuals who respond to initial
treatment, there is one option, to continue that treatment on the grounds
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that it would be pointless to alter an apparently efficacious intervention.
For individuals for whom initial treatment does not induce the desired
response, there may be multiple follow-up options. In some applications,
the roles of response and nonresponse are reversed.

1.2.3 Treatment of HIV Infection

As a final example, consider treatment for infection with the human im-
munodeficiency virus (HIV). After a patient is diagnosed with HIV infec-
tion, it is typical for the patient to be evaluated at regular, for example,
monthly, clinic visits and for decisions on administration of antiretrovi-
ral therapy to be made at each visit. Initially and at each subsequent
clinic visit, measures of the immunologic and virologic status of the pa-
tient are obtained to monitor the progression of the disease. A standard
measure of immunologic status is CD4 T cell count (cells/mm3), where
lower counts reflect compromised immunologic status; and virologic sta-
tus is indicated by viral load, the amount of HIV genetic material (RNA)
present in a blood sample (viral RNA copies/ml), where smaller viral
loads reflect better control of the virus.

On the basis of current and past measures of CD4 count and viral
load, as well as other accrued information on the patient, the goal of the
clinician at these clinic visits is to make decisions on therapy with the
goal of maximizing the expected benefit to the patient after some period,
say one year. Benefit may be reflected in the binary outcome of whether
or not, after one year, viral load is below the level that can be detected
by the assay used to ascertain viral load measurements. For simplicity,
suppose that the clinician can choose either to administer antiretroviral
therapy for the next month, coded as 1, or not, coded as 0. Then a dy-
namic treatment regime comprises a decision rule at Decision 1, the time
a patient presents with HIV infection; and decision rules at Decisions
2, . . . , 12, say, corresponding to the monthly visits. The rule at Decision
1 takes as input baseline CD4 count, viral load, and other information
and selects an option from the set of possible options {0, 1}; those at
Decisions 2, . . . , 12 take as input previous and current CD4 counts, viral
load measures, and any other baseline and evolving information on the
patient and recommend an option from {0, 1}. A complication is that
the virus can become resistant to antiretroviral therapies over time, in
which case administration of such a therapy henceforth is of no benefit
to the patient. In this simple example, for a patient whose accrued infor-
mation at the time of a decision includes an indication that resistance
has developed, the only feasible option from among those coded as 0 and
1 at this and all future decision points is option 0, do not administer
therapy.

Here, in contrast to the previous two examples, the timing of the de-
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cisions is predetermined and fixed according to the clinic visit schedule.
As before, development of an optimal treatment regime is of interest.

1.3 The Meaning of “Dynamic”

One of the first uses of the term “dynamic treatment regime” is by
Murphy et al. (2001), who define dynamic treatment regimes as com-
prising “rules for how the treatment level and type should vary with
time,” where “these rules are based on time-varying measurements of
subject-specific need for treatment.” These authors go on to highlight
the distinction between a dynamic and nondynamic treatment regime,
stating that the latter “is a special case of a dynamic treatment regime
in which the treatment assignments do not vary by posttreatment obser-
vations.” An interpretation of this is that a nondynamic regime involves
rules that do not take into account patient information in assigning treat-
ment. Such regimes have been called “static” rather than nondynamic
in later literature.

For instance, consider again treatment of HIV-infected patients with
antiretroviral therapy as in Section 1.2.3. Using this definition in this
context, an example of a nondynamic or static treatment regime is one
for which the rule at each monthly decision point dictates that therapy
always be administered, so that a patient following this regime would al-
ways receive therapy regardless of his evolving virologic and immunologic
status, side effects, or possible development of resistance of the virus to
the antiretroviral agents. Another nondynamic regime might dictate that
therapy should be administered for the first six months after the patient
is diagnosed and then withdrawn for the next six months, again regard-
less of the progression of her disease. In contrast, a dynamic treatment
regime involves rules that incorporate virologic, immunologic, and other
information, so that the resulting treatment options administered vary
according to values of the input information and are thus “dynamic,”
allowing treatment decisions to be responsive to the progression of the
patient’s disease. Clearly, the foregoing static/nondynamic regimes are
of little relevance in practice, as it is unlikely that a clinician would be
willing to, for example, withdraw therapy from a patient whose viral
levels are not under control or to continue therapy for a patient whose
virus has become resistant to it.

More recently, some authors have used “dynamic treatment regime”
to refer to the fact that a regime involves multiple decision points, with-
out regard to the nature of its rules, thus tacitly implying that a sin-
gle decision regime is “nondynamic.” In their definition above, Murphy
et al. (2001) do allow a nondynamic regime with any number of decision
points to involve rules that incorporate baseline information, so that
“dynamic” refers to the additional dependence of the rules following the
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initial decision point in a multistage situation on evolving information.
This definition is thus consistent with the view of any single stage regime
as “nondynamic.”

Other authors have used “dynamic treatment regime” to refer to any
regime, single or multistage, whose rules dictate treatment decisions that
vary according to the values of the accrued patient information the rule
takes as input, including at Decision 1, where the accrued information
is that available at baseline.

A reader who is confused at this point has every right to be so. The
convention we adopt in this book is that a dynamic treatment regime
is as defined in the last paragraph; that is, a regime involving one or
more decision points for which the decision rules potentially incorporate
baseline and evolving patient information and thus lead to treatment
selections that vary according to this information, including at Decision
1. A “static” regime is a special case of a dynamic treatment regime
with one or more decision points whose rules do not incorporate such
information. This definition of a dynamic treatment regime is aligned
with the goal of precision medicine, even if attention is focused on a
single decision point only.

As illustrated by the HIV example, static regimes are of limited inter-
est in and are inconsistent with clinical practice and precision medicine.
Consequently, we often refer to dynamic treatment regimes simply as
“treatment regimes,” without qualification.

1.4 Basic Framework

1.4.1 Definition of a Dynamic Treatment Regime

We now define more precisely the notion of a dynamic treatment regime
and present the basic notational framework and conventions we adopt
throughout this book.

In most of this book, we consider the situation where we can identify
a finite number K ≥ 1 decision points at which a treatment must be
selected from among a set of available, feasible options. Indexing the
decision points by k = 1, . . . ,K, we let Ak denote the set of available
treatment options at Decision k, and let ak represent an option in Ak.
We restrict attention mainly to the case where the number of options
in Ak for each k = 1, . . . ,K is finite and possibly different for different
k. It is also possible for Ak to be an infinite set, as would be the case
when the treatment options are doses of a drug in a continuous range of
possible doses, which we mention at some points later in the book.

For definiteness, consider the setting of acute leukemia in Sec-
tion 1.2.1, which involves K = 2 decision points. At Decision 1, A1 =
{C1,C2}, so comprises the two induction chemotherapy options available
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when an individual is diagnosed. At Decision 2, A2 = {M1,M2,S1,S2}, so
contains the two maintenance and two salvage therapies. As noted pre-
viously, only the maintenance options are feasible for individuals who
respond to the induction therapy initiated at Decision 1, and only the
salvage options are appropriate for nonresponders to induction therapy.
In general, Ak includes all available options, where of necessity some
options may not be feasible for some individuals because of their past
histories; we formalize this consideration later in the book.

Let x1 denote the collection of information available on an individual
at Decision 1, so at baseline. Let a1 ∈ A1 be a treatment option at Deci-
sion 1, and let x2 be additional information arising between Decisions 1
and 2. Let a2 ∈ A2 be a treatment option at Decision 2, and let x3 be ad-
ditional information ascertained between Decisions 2 and 3. Continuing
in this fashion, letting xk be additional information collected between
Decisions k − 1 and k after receipt of option ak−1 ∈ Ak−1 at Decision
k − 1, at Decision k, we denote by hk the accrued information, or his-
tory, available on an individual. At Decision 1, the accrued information
or history is simply the baseline information x1; at subsequent decisions,
the history consists of the additional information arising between previ-
ous decisions and the treatment options administered at those decisions.
Thus, we define the history hk formally as

h1 = x1,

hk = (x1, a1, . . . , xk−1, ak−1, xk), k = 2, . . . ,K,
(1.1)

where a1, . . . , ak−1 are the treatment options administered at Decisions
1 to k − 1. Let Hk denote the support of hk, k = 1, . . . ,K.

Thus, from (1.1), in the leukemia example, the history h1 = x1 avail-
able at Decision 1 might include baseline demographic, physiologic, and
clinical variables; prior medical history; and genetic and genomic in-
formation, and a1 ∈ A1 is the induction therapy option administered
at Decision 1. The information x2 collected intermediate to Decisions
1 and 2 might include updated measures of clinical variables, evolv-
ing marker values, indicators of occurrence of and timing of adverse
events, and response status. Then the history available at Decision 2
is h2 = (x1, a1, x2). The option a2 ∈ A2 is the maintenance or salvage
therapy administered at Decision 2, which clearly depends on the value
of response status contained in x2 and thus in h2.

It proves convenient later in the book to define

xk = (x1, . . . , xk), ak = (a1, . . . , ak), so that hk = (xk, ak−1).
(1.2)

The “overbar” notation in (1.2) is standard and allows us to reference
the components of the history, namely, all information ascertained on
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an individual and the treatment options administered to an individual
up to the current decision, separately when we discuss multiple deci-
sion problems. If we define Ak = A1 × · · · × Ak, k = 1, . . . ,K, to be
the set of all possible combinations of treatment options that could be
administered through Decision k, then clearly ak ∈ Ak.

Armed with this notation, we now define formally a dynamic treat-
ment regime. At Decision k, a decision rule dk(hk) is a function that
maps an individual’s history to a treatment option in Ak, that is,
dk : Hk → Ak, k = 1, . . . ,K. This definition makes precise that, at
Decision k, a decision rule is a function that takes as input the accrued
information or history for an individual and returns a treatment option
from among the available options. Then a dynamic treatment regime d
is defined to be a collection of such rules; that is, with K decision points,

d = {d1(h1), . . . , dK(hK)}. (1.3)

When K = 1, corresponding to a single stage setting, a dynamic treat-
ment regime is a single rule, so that d = {d1(h1)}. For brevity, we often
suppress the arguments of the rules and refer to a regime with K decision
points as

d = (d1, . . . , dK).

Corresponding to the convention set forth in Section 1.3, a dynamic
treatment regime is one for which the rules dk(hk) return different treat-
ment options ak ∈ Ak depending on the value of hk for at least one of
k = 1, . . . ,K. A static regime is then one for which each rule dk(hk)
returns the same treatment option in Ak regardless of the value of the
history hk. For example, if we restrict attention to the single stage prob-
lem involving Decision 1 in the leukemia context, so that all dynamic
treatment regimes involve a single rule d1(h1), and h1 = x1 comprises
baseline information, an example of a static regime is one with rule

d1(h1) = C1 for all h1.

That is, the rule is of the form “give C1 regardless of the baseline in-
formation on an individual.” Note that, if we consider both decisions,
K = 2, it is impossible to conceive of a plausible static regime for this
problem, because any reasonable decision rule at Decision 2 must take
into account response status, as, for example, a rule that assigns salvage
therapy to all individuals regardless of whether or not they responded
to induction therapy would contradict acceptable clinical practice and
indeed be unethical.

These definitions of decision rules and treatment regimes are formu-
lated in terms of information that would be realized by an individual
over the course of the K decisions. Given a set of rules, treatment de-
cisions for an individual can be made according to them as information



1.4. BASIC FRAMEWORK 11

accrues. We emphasize that nowhere in these definitions do we refer to
observed data, for example, from a clinical trial or observational study.
A dynamic treatment regime can be defined independently of any data,
as it is certainly possible to conceive of decision rules purely on the basis
of knowledge of the information that would be available at each decision,
subject matter expertise, and practical considerations.

In the foregoing formulation of a treatment regime, the decision rules
can be viewed as deterministic or nonrandom in the sense that, at De-
cision k, given history hk, the rule dk(hk) assigns one and only one
treatment option from among those in Ak, k = 1, . . . ,K. It is also pos-
sible to define the notion of a random dynamic treatment regime, which
is a regime for which the rule dk(hk) assigns treatment options in Ak
according to some prespecified probabilities depending on hk. In the vast
majority of applications, interest focuses on nonrandom regimes. Accord-
ingly, in this book, we restrict attention to methodology for nonrandom
dynamic treatment regimes. See Murphy et al. (2001) for discussion of
random regimes.

1.4.2 Data for Development and Evaluation of Dynamic Treatment
Regimes

In the classical study of the effect of a specific treatment option, a fun-
damental goal is to deduce the expected outcome if it were to be used
in a population of interest and how that expected outcome compares to
that for a competing option. This is based on estimation of the expected
outcome for each option from data, where it is widely accepted that
data from a clinical trial in which participants are assigned at random
to receive the treatment options under consideration are most suitable
for this purpose. As reviewed in detail in Chapter 2, data from ran-
domized studies allow apparent differences in expected outcome to be
attributed to the treatments under study. In contrast, data from obser-
vational studies in which the treatments received by participants are at
their and their physicians’ discretion can lead to biased inferences. This
is due to the possibility that the effects of treatments are confounded
with individual characteristics; for example, such that sicker individuals
are more likely to receive one treatment option over another.

Given a particular dynamic treatment regime involving K ≥ 1 deci-
sion points, it is of similar interest to estimate the expected outcome if
the population were to receive treatment according to its rules and to
compare the expected outcome to that associated with another regime.
Data appropriate for this purpose are thus required. More generally, it is
clear that an infinitude of possible regimes can be conceived, depending
on different choices of rules. As we have noted, a fundamental objective
is to identify an optimal set of rules; that is, an optimal regime, from
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among all possible regimes that can be conceived. Estimation of an op-
timal regime thus must be based on suitable data. For these objectives,
when K = 1, the issues are the same as in the classical setting.

When K > 1, estimation of the expected outcome if the population
were to receive treatment according to the rules in a particular treatment
regime and of an optimal regime involves additional considerations. As
discussed in detail in Chapter 5, it is not possible to “piece together”
analyses of data from K separate randomized or observational studies,
each focused on a single decision point in isolation and each involving
different sets of subjects, for this purpose. A major reason for the failure
of this approach is that treatments administered at earlier decisions may
have effects that do not manifest immediately and thus have implications
for selection of treatments at later decision points. Accounting appro-
priately for such “delayed effects” requires that data be available on the
same set of subjects through all K decisions. Data from a longitudinal,
observational study in which the same patients are followed through all
K decisions are one possible such resource, but could be subject to sig-
nificant potential for confounding, now in a time-dependent fashion as
detailed in Chapter 5, leading to biased inferences. Intuitively, data from
a study in which individuals are randomly assigned to the treatment op-
tions at each decision point should be preferable to data from a such a
longitudinal, observational study.

These considerations have led to great interest in the sequential mul-
tiple assignment randomized trial (SMART) design (e.g., Lavori and
Dawson, 2004; Murphy, 2005). Given a set of K > 1 decision points, in
a SMART, participants are randomized repeatedly to the available, fea-
sible options at each decision point. Accordingly, discussion of method-
ology for dynamic treatment regimes of necessity must include a discus-
sion of this study design, which is the topic of Chapter 9. In Chapters 5
and 6, a formal statistical framework for multiple decision problems is
presented in which the conditions under which observed data are ap-
propriate for estimation of dynamic treatment regimes can be clarified.
This framework demonstrates that the SMART design yields a “gold
standard” data source for this purpose.

1.5 Outline of this Book

The goal of this book is to present detailed, systematic overview of
methodology for dynamic treatment regimes. With efforts to collect and
curate patient-level data that can be used to inform estimation of treat-
ment regimes rapidly evolving, we hope to make the foundations of the
area and both fundamental techniques and newer advances accessible to
statisticians and other researchers, who can use them to exploit these
rich data resources.
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The book is appropriate for graduate students and researchers in
statistics and related quantitative fields and assumes no prior exposure
to dynamic treatment regimes, causal inference, or associated topics.
Chapters 1–7 and 9 present foundational material that could comprise an
introductory PhD-level course on this topic. Familiarity with probability
and statistical inference and popular statistical modeling approaches at
a graduate (PhD) level should provide adequate background for much of
this material, although parts of Chapters 6, 7, and 9 are at a somewhat
higher mathematical level. On a first reading, technical arguments in
these chapters can be omitted without loss of continuity. Chapters 8 and
10 cover more specialized material, which we recommend be approached
after the reader feels comfortable with Chapters 1–7.

Central to this area is causal inference , particularly in the setting
of time-dependent treatment assignment. In Chapter 2, we review the
fundamentals of causal inference in a situation analogous to the setting
of a single decision point. This chapter also reviews standard statistical
modeling strategies and associated large sample theory, as these play an
essential role in methodology for dynamic treatment regimes. Chapters 3
and 4 focus on treatment regimes in the single decision setting. Chap-
ter 3 presents a causal inference framework in which an optimal single
decision regime can be defined precisely, which provides the groundwork
for methodology for estimation of optimal regimes from data. Several
key approaches are presented in which a decision rule can be repre-
sented through a finite set of parameters that are estimated from data.
Chapter 4 covers additional approaches, including those motivated by
viewing estimation of an optimal regime as a classification problem, al-
lowing techniques from machine learning to be exploited.

Chapters 5–7 cover the fundamentals of multiple decision dynamic
treatment regimes. Because a formal account is rather involved, Chap-
ter 5 presents a high level, less technical introduction to the multiple
decision problem, which serves as a “roadmap” to the detailed, precise
treatment in the next two chapters. Chapter 6 begins with a rigorous
account of an appropriate statistical framework and of key assumptions
that are required to deduce multiple decision regimes from observed data
based on causal inference concepts in a time-dependent setting. Method-
ology for estimating the expected outcome of a given, specified, multi-
stage treatment regime from data is reviewed. Chapter 7 presents a for-
mal characterization of an optimal, multiple decision treatment regime
and an overview of methodology for estimation of an optimal regime.
This includes methods based on viewing the problem from a classifica-
tion perspective. Chapter 8 extends the framework and methods to the
setting where the outcome is a time to an event, which involves addi-
tional challenges owing to the fact that individuals may experience the
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event before reaching all K decision points and that the outcome may
be censored for some individuals in the observed data.

Chapter 9 provides an overview of SMARTs, including methods for
sample size determination for these studies. Statistical inference on quan-
tities associated with optimal dynamic treatment regimes is challenging.
This is because this is an inherently nonsmooth statistical problem, so
that standard asymptotic theory does not apply. Chapter 10 starts with
an explicit demonstration of this problem and then presents an account
of approaches to achieving valid large sample inference in single and mul-
tiple decision settings. Of necessity, this chapter is technical in nature.

Research on methodology for dynamic treatment regimes is still un-
dergoing vigorous development. Chapter 11 provides a brief account of
some additional topics. Supplemental material on these topics is avail-
able on the website dedicated to this book, which is noted in the Preface.

Many of the methods presented in this book involve quantities such as
regression relationships between an observed outcome and patient char-
acteristics and treatment options received and probabilities of receiving
treatment options at a decision point given an individual’s history. In
most of the book, we focus on methods based on specification of para-
metric models for these relationships. This is consistent with how the
methods are most often implemented in practice and in some cases leads
to consideration of regimes whose rules are of a relatively straightforward
form. Although this supports presentation of the methods in terms of
approaches and theory that are likely to be familiar to most readers, it
is not a requirement. As is noted in later chapters, in most cases it is
possible to use instead more flexible modeling approaches, and, indeed,
some methods are predicated on flexible representation of relationships.

Readers seeking a broad introduction to the foundations of and key
methods in this area should read Chapters 1–5, the first two sections
of Chapter 6, and Chapters 9 and 11. Those interested in a deeper,
more comprehensive review should also read the remainder of Chapter 6,
Chapter 7, and the first two sections of Chapter 10. Those familiar with
survival analysis may also wish to read Chapter 8; the material on sin-
gle decision problems is more accessible than that on multiple decisions,
which is rather involved. Readers interested in the theoretical underpin-
nings of inference should cover Chapter 10, recognizing that this chapter
is rather technical, as noted above.

Detailed accounts of application of some methods reviewed in Chap-
ters 2–4, 5–7, and 8, are available on the dedicated website for this book
given in the Preface. Many of these analyses are demonstrated using the
R package DynTxRegime, developed by the authors, which is available
on the website and at the Comprehensive R Archive Network (CRAN).

Remark. In this book, we use the term fixed treatment regime to refer
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to a given, specified treatment regime. That is, we refer to a particular
regime d with a given set of rules as a fixed regime. In the context of the
HIV infection example in Section 1.2.3, where the history hk at Decision
k contains current CD4 count CD4k, say, an example of a fixed regime
is the regime d with rules dk such that dk(hk) = 0, do not administer
antiretrovial therapy for the next month, if CD4k > 200 cells/mm3; and
dk(hk) = 1, do administer antiretroviral therapy for the next month, if
CD4k ≤ 200 cells/mm3, k = 1, . . . ,K. Here, the rules characterizing d
are given, specified functions of hk. Another example of a fixed regime
might involve different CD4 thresholds at different decision points; e.g.,
if there are K = 12 monthly visits, dk(hk) = 0(1) if CD4k > (≤) 200 for
k = 1, . . . , 6 and dk(hk) = 0(1) if CD4k > (≤) 400 for k = 7, . . . , 12.

A fixed regime as defined here should not be confused with a static
regime. As defined in Section 1.3, a static regime is such that all of its
rules do not use any patient information to select treatment. As the
examples in the previous paragraph demonstrate, a fixed regime need
not involve static rules. Our use of the term “fixed” also should not be
construed to imply that the timing of the decision points is according to
a predetermined, or “fixed,” schedule. In the acute leukemia and ADHD
examples in Sections 1.2.1 and 1.2.2, the timing of the second decision
point in any particular regime in these contexts is not predetermined
but rather depends on a patient’s response status.

Remark. Throughout the book, we present formal arguments justifying
theoretical and methodological developments. To avoid having measure-
theoretic considerations distract from appreciation of the conceptual
foundations embodied in some of these arguments, particularly in early
chapters, we often treat random variables that may be continuous or
discrete as discrete without comment. The arguments of course can be
generalized under appropriate conditions.
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